Oggi, Interruttore automatico è un argomento di grande rilevanza e interesse per un'ampia varietà di persone in tutto il mondo. Con l'avanzamento della tecnologia e della globalizzazione, Interruttore automatico è diventato un punto chiave di discussione in diversi ambiti, dalla politica alla scienza, passando per la cultura e la società. Le opinioni e i punti di vista su Interruttore automatico sono diversi e mutevoli, rendendolo un argomento entusiasmante e in continua evoluzione. In questo articolo esploreremo diversi aspetti di Interruttore automatico, dalle sue origini e influenza oggi, alle possibili implicazioni future che potrebbe avere. Inoltre, analizzeremo diversi punti di vista e argomentazioni sull'argomento, con l'obiettivo di offrire una visione completa e arricchente di Interruttore automatico.
Un interruttore automatico, o disgiuntore[senza fonte] è un dispositivo elettrico progettato per interrompere autonomamente un circuito elettrico per determinate condizioni di funzionamento.[1] Le proprietà degli interruttori automatici consentono di operare la selettività sugli impianti elettrici.
L'interruttore magnetotermico (comunemente chiamato interruttore automatico) è costituito da due relè, uno magnetico e uno termico. Il relè magnetico protegge il circuito dalle correnti di elevato valore (solitamente correnti di cortocircuito) e viene infatti definito come protezione di massima corrente. Il funzionamento dello sganciatore magnetico è basato sull'attrazione elettromagnetica generata da un solenoide percorso dalla corrente di guasto che, generando una forza elettromotrice indotta, aziona una bobina che comanda un sezionatore, il quale opera l'apertura del circuito. L'intervento è quasi istantaneo al superamento della massima corrente, indifferentemente dal valore assunto della corrente stessa. Vi è poi l'intervento termico spiegato nel dettaglio nella sezione Interruttore termico.
L'interruttore termico è costituito dal solo relè termico ed è un dispositivo più semplice rispetto al magnetotermico e garantisce la protezione solo dai sovraccarichi.
Il funzionamento del relè termico è mirato a proteggere il circuito da correnti di valore più modesto (solitamente correnti di sovraccarico e minime correnti di corto circuito). Il suo funzionamento è basato sul comportamento dei metalli a seguito del calore che nasce per effetto Joule al passaggio di una corrente; tale corrente percorre una lamina realizzata da due metalli con differente coefficiente di dilatazione termica. Poiché i coefficienti non risultano essere uguali, le diverse dilatazioni porteranno ad un curvamento della lamina, quindi allo sganciamento del relè e all'apertura del circuito. L'intervento della componente termica è definito da una curva d'intervento, all'aumentare del valore della corrente di guasto diminuisce il tempo d'intervento. Ogni interruttore ha una sua curva d'intervento.
L'interruttore differenziale non è una protezione di massima corrente, ma il suo funzionamento si basa sulla prima legge di Kirchhoff. Nel caso la somma algebrica delle correnti entranti, o uscenti, nel dispositivo sia superiore ad un valore di soglia, l'interruttore interviene. All'aumentare del valore di questa somma (o differenza, da cui il nome) il tempo d'intervento diminuisce.
Gli interruttori automatici consentono di sezionare (ovvero porre fuori servizio) un'area guasta dell'impianto elettrico senza disalimentare le altre aree funzionanti.[2] La selettività si opera con due criteri principali:
Consiste nella differenziazione delle correnti, si utilizza quando le correnti di cortocircuito sono molto diverse da loro.
Le protezioni vengono tarate scalarmente (come visibile in Fig. 1): quelle più a monte con correnti più elevate, mentre quelle più a valle con correnti inferiori, in modo da dare una certa "gerarchia" al sistema di protezione. Questa soluzione, sempre nell'esempio considerato in figura, permette di far intervenire la giusta protezione in funzione alla posizione del guasto, ovvero:
Consiste nella differenziazione dei tempi di intervento, si utilizza quando le correnti di cortocircuito sono simili tra loro.
Le protezioni vengono tarate scalarmente (come visibile in Fig. 2): quelle più a monte con un tempo di intervento più alto, mentre quelle più a valle con un tempo di intervento più breve, con lo stesso scopo della selettività amperometrica. Da notare che non bisogna tarare con troppo tempo di ritardo, altrimenti il guasto può fare danni prima di venire interrotto. In generale è preferibile non andare oltre un ritardo di 300 ms tra una protezione e quella successiva. Bisogna ricordarsi infine che anche gli organi di protezione hanno un tempo di ritardo intrinseco che non deve essere escluso dai calcoli. Questa soluzione, sempre nell'esempio considerato in figura, permette di far intervenire la giusta protezione in funzione alla posizione del guasto, ovvero:
In pratica serve a garantire lo scollegamento, in caso di sovraccarico o corto circuito, di un singolo carico o di una parte di un circuito elettrico con più carichi, in modo da isolare i guasti senza coinvolgere l'intero circuito elettrico o sistema, che continuerà a funzionare normalmente.
Controllo di autorità | NDL (EN, JA) 00571798 |
---|